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Querying your geometry

� Given a polygonal model, how might 

you find…

• the normal at each vertex?

• the curvature at each vertex?

• the convex hull?

• the bounding box?

• the center of mass?
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Querying your geometry

� A recurring theme here will be,

“The polygons are not the shape: the polygons approximate

the surface of the shape.”

� Some questions from past lectures (e.g. ray-polygon 

intersection) were about the actual polygons.

� But other questions, like the normal at a vertex, are 

really about approximating the underlying surface 

as closely as possible.
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Normal at a vertex

� Expressed as a limit, 

The normal of surface S at point P is the limit of the 

cross-product between two (non-collinear) vectors 

from P to the set of points in S at a distance r from 

P as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

� Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?

• The normal to the surface at any point on a face is a 
constant vector.

• The ‘normal’ to the surface at any edge is an arc 
swept out on a unit sphere between the two normals 
of the two faces.

• The ‘normal’ to the surface at a vertex is a space 
swept out on the unit sphere between the normals of 
all of the adjacent faces.
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Finding the normal at a vertex

� Method 1: Take the 

average of the normals 

of surrounding 

polygons

� Problem: splitting one 

adjacent face into 

10,000 shards would 

skew the average
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Finding the normal at a vertex

� Method 2: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by 
the area of each face

• 2a: Weight each face 
normal by the area of the 
face divided by the total 
number of vertices in the 
face

� Problem: Introducing new 
edges into a neighboring face 
(and thereby reducing its 
area) should not change the 
normal.

� Should making a face larger 
affect the normal to the 
surface near its corners?

• Argument for yes: If the 
vertices interpolate the ‘true’
surface, then stretching the 
surface at a distance could still 
change the local normals.
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Finding the normal at a vertex

� Method 3: Take the 

weighted average of the 

normals of surrounding 

polygons, weighted by 

each polygon’s face 

angle at the vertex

� Face angle: the angle α

formed at the vertex v by 

the vectors to the next 

and previous vertices in 

the face F
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Note: In this equation, arccos

implies a convex polygon.  Why?

Note: In this equation, arccos

implies a convex polygon.  Why?
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Gaussian curvature on smooth surfaces

� Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.

• One can measure the 
directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

• The product of k1 and k2 is 
the scalar Gaussian 
curvature.

Image by Eric Gaba, from Wikipedia
Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces

� Formally, the Gaussian 
curvature of a region on 
a surface is the ratio 
between the area of the 
unit sphere swept out by 
the normals of that 
region and the area of the 
region itself.

� The Gaussian curvature 
of a point is the limit of 
this ratio as the region 
tends to zero area.

Area on the surface

Area of the projections 

of the normals on the 

unit sphere

anus

as

0 on a plane

anus

as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces

� On a discrete surface, normals do not vary 
smoothly: the normal to a face is constant on the 
face, and at edges and vertices the normal is—
strictly speaking—undefined. 
• Normals change instantaneously (as one's point of view 

travels across an edge from one face to another) or not at 
all (as one's point of view travels within a face.) 

� The Gaussian curvature of the surface of any 
polyhedral mesh is zero everywhere except at the 
vertices, where it is infinite.
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Angle deficit – a better solution for 

measuring discrete curvature

� The angle deficit AD(v) of a vertex v is 

defined to be two π minus the sum of the 

face angles of the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

∑−=
F

vFvAD ),(2)( απ
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Angle deficit

Hmmm…
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Genus, Poincaré and the Euler Characteristic

� Formally, the genus g of a closed 
surface is
...“a topologically invariant property of 

a surface defined as the largest 
number of nonintersecting simple 
closed curves that can be drawn on 
the surface without separating it.”

--mathworld.com

� Informally, it’s the number of 
coffee cup handles in the 
surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

� Given a polyhedral surface S without border 

where:

• V = the number of vertices of S,

• E = the number of edges between those vertices,

• F = the number of faces between those edges,

• χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

χ=−=+− gFEV 22
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3
 fa

ce
s



18

The Euler Characteristic and angle deficit

� Descartes’ Theorem of Total Angle Deficit states 

that on a surface S with Euler characteristic χ, the 

sum of the angle deficits of the vertices is 2πχ:

� Cube: 

• χ = 2-2g = 2

• AD(v) = π/2

• 8(π/2) = 4π = 2πχ

� Tetrahedron: 

• χ = 2-2g = 2

• AD(v) = π

• 4(π) = 4π = 2πχ

πχ2)( =∑S
vAD
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Convex hull

� The convex hull of a set of points is the unique 
surface of least area which contains the set.
• If a set of infinite half-planes have a finite non-empty 

intersection, then the surface of their intersection is a 
convex polyhedron.

• If a polyhedron is convex then for any two faces A and B in 
the polyhedron, all points in B which are not in A lie to the 
same side of the plane containing A.

� Every point on a convex hull has non-negative 
angle deficit.

� The faces of a convex hull are always convex.
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Finding the convex hull of a set of points

� Method 1: For every 

triple of points in the 

set, define a plane P.  

If all other points in the 

set lie to the same side 

of P (dot-product test) 

then add P to the hull; 

else discard.

� Problem 1: this works 

but it’s O(n4).
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Finding the convex hull of a set of points

� Method 2:

1. Initialize C with a tetrahedron from any four non-colinear points 
in the set.  Orient the faces of C by taking the dot product of the 
center of each face with the average of the vertices of C.

2. For each vertex v, 

1. For each face f of C, 

1. If the dot product of the normal of f with the vector from the center of 
f to v is positive then v is ‘above’ f.  

2. If v is above f then delete f and update a (sorted) list of all new border 
vertices.

2. Create a new triangular face from v to each pair of border vertices.

� Problem 2:

• This is O(n2) at best.
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Finding the convex hull of a set of points

Method 3:

� The exterior boundary of the union of 

the cells of the Delaunay triangulation 

of a set of points is its convex hull.

� Algorithm:

1. Find the Voronoi diagram of your point set

2. Compute the Delaunay triangulation (2D) or 

tetrahedralization (3D)

3. Delete all faces of the simplices which aren’t 

on the exterior border

The exterior border of the 

Delaunay triangulation is 

the convex hull of the point 

set.
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Testing if a point is inside a convex hull

� We can generalize Method 2 to test whether 

a point is inside any convex polyhedron.

• For each face, test the dot product of the normal of 

the face with a vector from the face to the point.  If 

the dot is ever positive, the point lies outside.

• The same logic applies if you’re storing normals at 

vertices.
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Centroids

� The centroid of a surface is the center 

of mass of the volume enclosed by the 

surface.

� This is not the same as the center of 

the bounding box.

• We’ll assume that the ‘material’ within the 

surface is of uniform density. 

• We’ll also assume that we have a closed 

surface (without border.)
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Centroids

� Method 1: Take the 

average of all vertices.

C = (Σ{v}(v)) / ||{v}||

� Problem 1: as with 

normals, an area of 

bizarre density would 

skew the average.

True centroid Average of vertices

Center of bounding box

~50 verts ~500 verts
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Centroids

� Method 2: Take the 
average of the centers of 
the faces of the surface, 
weighting each by the area 
of the face.
• This method works well for 

convex polyhedra.

� Problem 2: This is 
vulnerable to dense 
‘wrinkles’ of many 
polygons packed into a 
small volume.

The average adult human brain has a surface area of approximately 2,500 cm2, a volume of roughly 1200 cm3, and weighs about 
1400g.  By comparison, a sphere of similar volume would have a surface area of  546 cm2.  Brain image courtesy of Moprhonix.com.
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Centroids

� Method 3a: Use “Monte Carlo”
integration.  Find the bounding 
box of the surface and then 
choose billions of points at 
random inside the box; take the 
average of all those points 
which fall inside the surface.

� Problem 3a: Testing for 
‘inside’ is time-consuming 
(although it can be accelerated; 
try BSP trees.)  Also, this lacks 
precision.  And, frankly, 
finesse.

� Method 3b: Decompose the 
polyhedron into convex 
polyhedra, then use method 2 
to find the center of each.  
Average the centers, weighting 
each point by the volume of its 
convex polyhedron.

� Problem 3b: Convex 
decomposition is solved, but 
it’s not trivial.
• Convex regions decompose 

rapidly to tetrahedra.

• Nonconvex regions can be 
tricky: tetrahedra may cross.
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Centroids

� Method 4 (Mirtich, 1996):
1. The x, y and z co-ordinates of the center of mass 

of a volume V can be expressed as an integral 
over V.

2. Using the Divergence Theorem, which relates 
the integral over a volume to the integral over the 
surface of the volume, the co-ordinate integrals 
can be re-written as integrals over the surface.

3. These surface integrals can be converted to 
integrals over the projections of each of the 
polyhedral faces.

4. Using Green’s Theorem, which relates the 
integral over a planar area to the integral around 
its boundary, the integrals over the faces can be 
reduced to integrals over the projections of the 
edges.  The edges are linear.
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